
DIMACS Series in Discrete Mathematicsand Theoretical Computer ScienceComputational Power of Gene RearrangementLila Kari and Laura F. LandweberAbstract. In [8] we proposed a model to describe the homologous recombi-nations that take place during massive gene rearrangements in hypotrichousciliates. Here we develop the model by introducing the dependency of homol-ogous recombinations on the presence of certain contexts. We then prove thatsuch a model has the computational power of a Turing machine. This indi-cates that, in principle, some unicellular organisms may have the capacity toperform any computation carried out by an electronic computer.1. Introduction and notationThe process we model is gene rearrangement in ciliates, unicellular eukaryotes(nucleated cells) that possess two types of nuclei: an active macronucleus (soma)and a functionally inert micronucleus (germline) which contributes only to sex-ual reproduction. The somatically active macronucleus forms from the germlinemicronucleus after sexual reproduction, during the course of development. The ge-nomic copies of some protein-coding genes in the micronucleus of hypotrichous cili-ates are obscured by the presence of intervening non-protein-coding DNA sequenceelements (internally eliminated sequences, or IES s). These must be removed be-fore the assembly of a functional copy of the gene in the somatic macronucleus.Furthermore, the protein-coding DNA segments (macronuclear destined sequences,or MDS s) in species of Oxytricha and Stylonychia are sometimes present in a per-muted order relative to their �nal position in the macronuclear copy. (See [8] for areview.)The developing ciliate macronuclear \computer" (Figure 1) apparently relieson the information contained in short direct repeat sequences to act as minimalguides in a series of homologous recombination events. These guide-sequences act inprinciple as splints, and the process of recombination results in linking the protein-encoding segments (MDSs) that belong next to each other in the �nal protein codingsequence. As such, the unscrambling of these protein-coding genes accomplishes animpressive feat of cellular computation. Other structural components of the ciliatechromatin presumably play a signi�cant role, but the exact details of the mechanismremain elusive [8].Before introducing the formal model, we summarize our notation. An alphabet� is a �nite, nonempty set. A sequence of letters from � is called a string (word)over � and in our interpretation corresponds to a linear strand. The words aredenoted by lowercase letters such as u; v; �i, xij. The length of a word w is denotedby jwj and represents the total number of occurrences of letters in the word. Ac
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204 LILA KARI AND LAURA F. LANDWEBER
Figure 1. Overview of gene unscrambling. Dispersed codingMDSs 1-7 reassemble during macronuclear development to formthe functional gene copy (top), complete with telomere addition tomark and protect both ends of the gene. (From [8].)word with 0 letters in it is called an empty word and is denoted by �. The setof all possible words consisting of letters from � is denoted by ��, and the setof all nonempty words by �+. We also de�ne circular words over � by declaringtwo words to be equivalent if and only if (i�) one is a cyclic permutation of theother. In other words, w is equivalent to w0 i� they can be decomposed as w = uvand w0 = vu, respectively. Such a circular word �w refers to any of the circularpermutations of the letters in w. Denote by �� the set of all circular words over �.A rewriting system TM = (S;�[f#g; P ) is called a Turing machine, [12], i�:(i) S and � [ f#g (with # 62 � and � 6= ;) are two disjoint alphabets referredto as the state and the tape alphabets.(ii) Elements s0 and sf of S, and B of � are the initial and �nal state, and theblank symbol, respectively. Also a subset T of � is speci�ed and referred to as theterminal alphabet. It is assumed that T is not empty.(iii) The productions (rewriting rules) of P are of the forms(1) sia �! sjb (overprint)(2) siac �! asjc (move right)(3) sia# �! asjB# (move right and extend workspace)(4) csia �! sjca (move left)(5) #sia �! #sjBa (move left and extend workspace)(6) sf a �! sf(7) a sf �! sfwhere si and sj are states in S, si 6= sf , sj 6= sf , and a; b; c are in �. For eachpair (si; a), where si and a are in the appropriate ranges, P either contains noproductions (2) and (3) (resp.(4) and (5)) or else contains both (3) and (2) forevery c (resp.contains both (5) and (4) for every c). There is no pair (si; a) such



COMPUTATIONAL POWER OF GENE REARRANGEMENT 205that the word sia is a subword of the left side in two productions of the forms (1),(3), (5).A con�guration of the TM is of the form #w1siw2#, where w1w2 representsthe contents of the tape, #s are the boundary markers, and the position of thestate symbol si indicates the position of the read/write head on the tape: if si ispositioned at the left of a letter a, this indicates that the read/write head is placedover the cell containing a. The TM changes from one con�guration to anotheraccording to its rules. For example, if the current con�guration is #wsiaw0# andthe TM has the rule sia �! sjb, this means that the read/write head positionedover the letter a will write b over it, and change its state from si to sj . The nextcon�guration in the derivation will be thus #wsjbw0#.The Turing machine TM halts with a word w i� there exists a derivation that,when started with the read/write head positioned at the beginning of w eventuallyreaches the �nal state, i.e. if #s0w# derives #sf# by succesive applications ofthe rewriting rules (1) - (7). The language L(TM ) accepted by TM consists ofall words over the terminal alphabet T for which the TM halts. Note that TM isdeterministic: at each step of the rewriting process, the application of at most oneproduction is possible.2. Computational power of gene rerrangementIn this section we de�ne the notion of a guided recombination system thatmodels the process taking place during gene rearrangement, and prove that suchsystems have the computational power of a Turing machine, the most widely usedtheoretical model of electronic computers.The following strand operations generalize the intra- and intermolecular recom-binations de�ned in [8] and illustrated in Figure 2 by assuming that homologousrecombination is in
uenced by the presence of certain contexts, i.e., either the pres-ence of an IES or an MDS 
anking a junction sequence. The observed dependenceon the old macronuclear sequence for correct IES removal in Paramecium suggeststhat this is the case ([9]). This restriction captures the fact that the guide sequencesdo not contain all the information for accurate splicing during gene unscrambling.Using an approach developed in [7] we use contexts to restrict the use of re-combinations. A splicing scheme, [3], [4] is a pair (�;�) where � is the alphabetand �, the pairing relation of the scheme, is a binary relation between tripletsof nonempty words satisfying the following condition: If (p; x; q) � (p0; y; q0) thenx = y.In the splicing scheme (�;�) pairs (p; x; q) � (p0; x; q0) now de�ne the contextsnecessary for a recombination between the repeats x. Then we de�ne contextualintramolecular recombination asfuxwxvg=)fuxv; �wxg; where u = u0p; w = qw0 = w00p0; v = q0v0:This constrains intramolecular recombination within uxwxv to occur only if therestrictions of the splicing scheme concerning x are ful�lled, i.e., the �rst occurrenceof x is preceded by p and followed by q and its second occurrence is preceded by p0and followed by q0.Similarly, if (p; x; q) � (p0; x; q0), then we de�ne contextual intermolecular re-combination asfuxv; �wxg=)fuxwxvg where u = u0p; v = qv0; w = w0p0 = q0w00:
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Figure 2. Intra- and intermolecular recombinations using repeatsx. During intramolecular recombination, after x �nds its secondoccurrence in uxvxw, the molecule undergoes a strand exchangein x that leads to the formation of two new molecules: a linearDNA molecule uxw and a circular one �vx. The reverse operationis intermolecular recombination.Informally, intermolecular recombination between the linear strand uxv and thecircular strand �wx may take place only if the occurrence of x in the linear strandis 
anked by p and q and its occurrence in the circular strand is 
anked by p0 andq0. Note that sequences p; x; q; p0; q0 are nonempty, and that both contextual intra-and intermolecular recombinations are reversible by introducing pairs (p; x; q0) �(p0; x; q) in �.The above operations resemble the \splicing operation" introduced by Head in[3] and \circular splicing" ([4], [13], [11]). [10], [1] and subsequently [14] showedthat these models have the computational power of a universal Turing machine.(See [5] for a review.)The operations de�ned in [8] are particular cases of guided recombination,where all the contexts are empty, i.e, (�; x; �) � (�; x; �) for all x 2 �+. Thiscorresponds to the case where recombination may occur between every repeat se-quence, regardless of the contexts. These unguided (context-free) recombinationsare computationally not very powerful: we have proved that they can only generateregular languages.If we use the classical notion of a set, we can assume that the strings enteringa recombination are available for multiple operations. Similarly, there would beno restriction on the number of copies of each strand produced by recombination.However, we can also assume some strings are only available in a limited number ofcopies. Mathematically this translates into using multisets, where one keeps trackof the number of copies of a string at each moment. In the style of [2], if N is



COMPUTATIONAL POWER OF GENE REARRANGEMENT 207the set of natural numbers, a multiset of �� is a mapping M : �� �! N [ f1g,where, for a word w 2 ��, M (w) represents the number of occurrences of w. Here,M (w) = 1 means that there are unboundedly many copies of the string w. Theset supp(M ) = fw 2 ��jM (w) 6= 0g, the support of M , consists of the strings thatare present at least once in the multiset M .We now de�ne a guided recombination system that captures the series of dis-persed homologous recombination events that take place during scrambled generearrangements in ciliates.De�nition A guided recombination system is a triple R = (�;�; A) where (�;�)is a splicing scheme, and A 2 �+ is a linear string called the axiom.A guided recombination system R de�nes a derivation relation that producesa new multiset from a given multiset of linear and circular strands, as follows.Starting from a \collection" (multiset) of strings with a certain number of availablecopies of each string, the next multiset is derived from the �rst one by an intra- orinter-molecular recombination between existing strings. The strands participatingin the recombination are \consumed" (their multiplicity decreases by 1) whereasthe products of the recombination are added to the multiset (their multiplicityincreases by 1).For two multisets S and S0 in �� [��, we say that S derives S0 and we writeS=)RS0, i� one of the following two cases hold:(1) there exist � 2 supp(S), �; �
 2 supp(S0) such that{ f�g=)f�; �
g according to an intramolecular recombination step in R,{ S0(�) = S(�) � 1, S0(�) = S(�) + 1, S0(�
) = S(�
) + 1;(2) there exist �0; ��0 2 supp(S), 
0 2 supp(S0) such that{ f�0; ��0g=)f
0g according to an intermolecular recombination step in R,{ S0(�0) = S(�0)� 1, S0(��0) = S(��0) � 1, S0(
0) = S(
0) + 1.Those strands which, by repeated recombinations with initial and intermediatestrands eventually produce the axiom, form the language of the guided recombina-tion system. Formally,Lka(R) = fw 2 ��j fwg=)�RS and A 2 supp(S)g;where the the multiplicity of w equals k. Note that Lka(R) � Lk+1a (R) for any k � 1.Theorem. Let L be a language over T � accepted by a Turing machine TM =(S;� [ f#g; P ) as above. Then there exist an alphabet �0, a sequence � 2 �0�,depending on L, and a recombination system R such that a word w over T � is inL if and only if #6s0w#6� belongs to Lka(R) for some k � 1.Proof. Consider that the rules of P are ordered in an arbitrary fashion andnumbered. Thus, if TM has m rules, a rule is of the form i : ui �! vi where1 � i � m.We construct a guided recombination system R = (�0;�; A) and a sequence� 2 �0� with the required properties. The alphabet is �0 = S [�[ f#g[ f$ij 0 �i � m + 1g. The axiom, i.e., the target string to be achieved at the end of thecomputation, consists of the �nal state of the TM bounded by markers:A = #n+2sf #n+2$0$1 : : :$m$m+1;



208 LILA KARI AND LAURA F. LANDWEBERwhere n is the maximum length of the left-side or right-side words of any of therules of the Turing machine.The sequence � consists of the catenation of the right-hand sides of the TMrules bounded by markers, as follows:� = $0 $1e1v1f1$1 $2e2v2f2$2 : : :$memvmfm$m $m+1;where i : ui �! vi, 1 � i � m + 1 are the rules of TM and ei; vi 2 � [ f#g.If a word w 2 T � is accepted by the TM, a computation starts then from astrand of the form #n+2s0w#n+2�, where we will refer to the subsequence startingwith $0 as the \program", and to the subsequence at the left of $0 as the \data".We construct the relation � so that(i) The right-hand sides of rules of TM can be excised from the program ascircular strands which then interact with the data.(ii) When the left-hand side of a TM rule appears in the data, the applicationof the rule can be simulated by the insertion of the circular strand encoding theright-hand side, followed by the deletion of the left hand side.To accomplish (i), for each rule i : u �! v of the TM, we introduce in � thepairs (C) ($i�1; $i; evf) � (evf; $i; $i+1);for all e; f 2 � [ f#g.To accomplish (ii) for each rule i : u �! v of the TM, add to the relation �the pairs (A) (ceu; f; d) � ($iev; f; $iev);(B) (c; e; uf$i) � (uf$i; e; vfd);for all c 2 f#g���, d 2 ��f#g�, jcj = jdj = n, e; f 2 � [ f#g.Following the above construction of the alphabet �0, sequence � and recombi-nation system R, for any x; y 2 �0 we can simulate a derivation step of the TM asfollows: fxceufdy$0 : : :$i�1$ievf$i$i+1 : : :$m+1g=)Rfxceufdy$0 : : :$i�1$i$i+1 : : :$m+1; �$ievfg=)Rfxceuf$ievfdy$0 : : :$i�1$i$i+1 : : :$m+1g=)Rfxcevfdy$0 : : :$i�1$i$i+1 : : :$m+1; �$ieufg:The �rst step is an intramolecular recombination using contexts (C) aroundthe repeat $i to excise �$ievf . Note that if the current strand does not containa subword $ievf$i, this can be obtained from another copy of the original linearstrand, which is initially present in k copies. The second step is an intermolec-ular recombination using contexts (A) around the repeat f , to insert $ievf afterceuf . The third step is an intramolecular recombination using contexts (B) aroundthe direct repeat e to delete $ieuf from the linear strand. Thus, the \legal" inser-tion/deletion succession that simulates one TM derivation step claims that any u inthe data, that is surrounded by at least n+1 letters on both sides may be replacedby v. This explains why in our choice of axiom we needed n + 1 extra symbols #to provide the contexts allowing recombinations to simulate all TM rules, including(3) and (5).



COMPUTATIONAL POWER OF GENE REARRANGEMENT 209From the fact that a TM derivation step can be simulated by recombinationsteps we deduce that, if the TM accepts a word w, then we can start a derivationin R from#n+2s0w#n+2� = #n+2s0w#n+2$0$1 : : :$ieivifi$i : : :$m$m+1and reach the axiom by only using recombinations according to R. This means thatour word is accepted by R, that is, it belongs to Lka(R) for some k. Note that ifsome rules of the TM have not been used in the derivation then they can be excisedin the end, and that k should be large enough so that we do not exhaust the set ofrewriting rules.For the converse implication, it su�ces to prove that starting from the strand#n+2s0w#n+2�, no other recombinations except those that excise rules of TM fromthe program and those that simulate steps of the TM in the data are possible in R.In the beginning of the derivation we start with no circular strands and k copiesof the linear strand#n+2s0w#n+2$0 : : :$ieivifi$i : : :$m+1; w 2 T �;where i : ui �! vi are TM rules, ei; fi 2 � [ f#g, 1 � i � m.Assume now that the current multiset contains linear strands of the form �0�,where �0 2 �0� contains only one state symbol and no $i symbols and� = $0r1r2 : : : rm$m+1;with ri either encoding the right-hand side of a rule or being the remnant of a rule,i.e., ri 2 f$ieivifi$ig[f$ig, 1 � i � m. Moreover, assume that the circular strandspresent in the multiset are of the form �$ieivifi, with ei; vi; fi as before.Then:(i) We cannot use (A) or (B) to insert or delete in the program because thatwould require the presence of strands ceufd or $ievf$iev (if we want to use (A))or ceuf$i or uf$ievfd (if we want to use (B)). However none of these strands canappear in the program. Indeed, the 1st, 3rd, and 4th word all contain subwordsover �[f#g of length at least n+3, and this is more than the length of the longestsubword over �[f#g present in the program. The 2nd word cannot appear in theprogram because no marker $i appears alone in p, as p contains always at least twoconsecutive markers.(ii)We cannot use (C) to insert or delete in the data because that would requirethe presence in �0 of two consecutive markers $i�1$i or $i$i+1, which contradictsour assumptions.(iii) We cannot use (C) to insert in the program because that would requirethe presence of a circular strand with two markers, - contradiction with our as-sumptions.Arguments (i) - (iii) show that the only possible recombinations are eitherdeletions in the program using (C), which result in the release of circular strands�$ievf , or insertions/deletions in the data using (A) and (B).Assuming that the data contains as a subword the left-hand side of a TM rulei : u �! v, and assuming that the necessary circular strand �$ievf has alreadybeen excised from the program, the next step is to show that the only possible



210 LILA KARI AND LAURA F. LANDWEBERinsertions/deletions in the data are those simulating a rewriting step of TM usingrule i.Indeed, in this situation,(1) It is not possible to delete in �0 using (A), or insert or delete using (B), as allthese operations would require a $i in �0. Therefore only an insertion in �0 using (A)is possible. An insertion according to (A) may only take place between a sequenceceuf and a sequence d, where u contains a state symbol, i.e. the read/write head,c and d have length n and e and f are letters. This means that, for the insertionto take place, the linear word has to be of the form�0 � = xceufdy �and the intermolecular recombination with the circular strand �$ievf inserts $ievfbetween u and f producing the linear strand�1 � = xceuf$ievfdy �:Note that, as �0 contains only one state symbol and no marker $i, the newlyformed word �1 contains only two state symbols (read/write heads), one in u andone in v, and only one marker $i. (Here we use the fact that every rule u �! v ofthe TM has exactly one state symbol on each side.)(2) Starting now from �1�,(2a) We can delete in �1 using (B) and, as there is only one $i in �1, there isonly one position where the deletion can happen. After the release of the strand�$ieuf as a circular strand, the linear strand produced is�2 � = xcevfdy �:(2b) No insertion in �1 using (A) may take place, as the marker $i \breaks"the contexts necessary for further insertions.Indeed, the occurrence of another insertion according to (A) requires that theread/write head symbol be both followed and preceded by at least (n + 1) lettersdi�erent from $i. In �1, the �rst read/write head is in u and the number of lettersfollowing it is at most juj � 1 + jf j � n� 1 + 1 = n, which is not enough as a rightcontext for insertion using (A). The second read/write head is in v and the numberof letters preceding it is at most jej+ jvj � 1 � 1 + n� 1 = n, which is not enoughas a left context for insertion using (A).(2c) No deletion in �1 using (A) may occur, as this would require the presenceof a repeat f bordered by a $iev on each side. This would imply that the currentstrand �1 contains two markers $i, which is not true.(2d) No insertion in �1 using (B) is possible, as that would require the presenceof a circular strand containing $ievfd. The length of such a strand would be atleast 1 + jej+ jvj+ jf j+ jdj that is, at least n+ 4, which is more than the length ofany initial or intermediate circular strand. Indeed, all the circular strands producedfrom the program have length n+3 and the only circular strands that are releasedare, as seen in (2a), of the form �$ieuf and thus also have lengths at most n+ 3.The arguments above imply that the only possible operations on the data sim-ulate legal rewritings of the TM by tandem recombination steps that necessarilyfollow each other.



COMPUTATIONAL POWER OF GENE REARRANGEMENT 211Together with the arguments that the only operations a�ecting the programare excisions of circular strands encoding TM rules, and that the circular TM rulesdo not interact with each other, this proves the converse implication.From the de�nition of the Turing machine we see that n, the maximumlength ofa word occurring in a TM rule, equals 4, which completes the proof of the theorem.Q.E.D.The preceding theorem implies that if a word w 2 T � is in L(TM ), then#6s0w#6� belongs to Lka(R) for some k and therefore it belongs to Lia(R) forany i � k. This means that, in order to simulate a computation of the Turingmachine on w, any su�ciently large number of copies of the initial strand will do.The assumption that su�ciently many copies of the input strand are present atthe beginning of the computation is in accordance with the fact that there aremultiple copies of each strand available during the (polytene chromosome) stagewhere unscrambling occurs. Note that the preceding result is valid even if we allowinteractions between circular strands or within a circular strand, particular casesof which have been formally de�ned in [8].The proof that a guided recombination system can simulate the computation ofa Turing machine suggests that the micronuclear gene, present in multiple copies,consists of a sequence encoding the input data, combined with a sequence encodinga program, i.e., a list of encoded computation instructions. The \computation in-structions" can be excised from the micronuclear gene and become circular \rules"that can recombine with the data. The process continues then by multiple inter-molecular recombination steps involving the linear strand and circular \rules", aswell as intramolecular recombinations within the linear strand itself. The resultinglinear strand, which is the functional macronuclear copy of the gene, can then beviewed as the output of the computation performed on the input data following thecomputation instructions excised as circular strands.The last step, telomere addition and the excision of the strands between thetelomere addition sites, can easily be added to our model as a �nal step consisting ofthe deletion of all the markers, rule delimiters and remaining rules from the outputof the computation. This would result in a strand that contains only the output ofthe computation (macronuclear copy of the gene) 
anked by end markers (telomererepeats). This also provides a new interpretation for some of the vast quantity ofnon-encoding DNA found in micronuclear genes.In conclusion, we have developed a model for the acrobatic process of gene un-scrambling in hypotrichous ciliates. While the model is consistent with our limitedknowledge of this biological process, it needs to be rigorously tested using moleculargenetics. We have shown, however, that the model is capable of universal compu-tation. This both hints at future avenues for exploring biological computation andopens our eyes to the range of complex behaviors that may be possible in ciliates,and potentially available to other evolving genetic systems.Acknowledgements. Jarkko Kari for essential contribution to the proof of thetheorem in its present form. Rani Siromoney, Gilles Brassard for suggestions, ErikWinfree and Gheorghe P�aun for comments. Grzegorz Rozenberg, Richard Lipton,David Prescott and Hans Lipps for discussion, Mark Daley for Figure 2.
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