DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

Computational Power of Gene Rearrangement

Lila Kari and Laura F. Landweber

ABSTRACT. In [8] we proposed a model to describe the homologous recombi-
nations that take place during massive gene rearrangements in hypotrichous
ciliates. Here we develop the model by introducing the dependency of homol-
ogous recombinations on the presence of certain contexts. We then prove that
such a model has the computational power of a Turing machine. This indi-
cates that, in principle, some unicellular organisms may have the capacity to
perform any computation carried out by an electronic computer.

1. Introduction and notation

The process we model is gene rearrangement in ciliates, unicellular eukaryotes
(nucleated cells) that possess two types of nuclei: an active macronucleus (soma)
and a functionally inert micronucleus (germline) which contributes only to sex-
ual reproduction. The somatically active macronucleus forms from the germline
micronucleus after sexual reproduction, during the course of development. The ge-
nomic copies of some protein-coding genes in the micronucleus of hypotrichous cili-
ates are obscured by the presence of intervening non-protein-coding DNA sequence
elements (internally eliminated sequences, or IESs). These must be removed be-
fore the assembly of a functional copy of the gene in the somatic macronucleus.
Furthermore, the protein-coding DNA segments (macronuclear destined sequences,
or MDSs) in species of Ozytricha and Stylonychia are sometimes present in a per-
muted order relative to their final position in the macronuclear copy. (See [8] for a
review.)

The developing ciliate macronuclear “computer” (Figure 1) apparently relies
on the information contained in short direct repeat sequences to act as minimal
guides in a series of homologous recombination events. These guide-sequences act in
principle as splints, and the process of recombination results in linking the protein-
encoding segments (MDSs) that belong next to each other in the final protein coding
sequence. As such, the unscrambling of these protein-coding genes accomplishes an
impressive feat of cellular computation. Other structural components of the ciliate
chromatin presumably play a significant role, but the exact details of the mechanism
remain elusive [8].

Before introducing the formal model, we summarize our notation. An alphabet
¥ is a finite, nonempty set. A sequence of letters from ¥ is called a string (word)
over % and in our interpretation corresponds to a linear strand. The words are
denoted by lowercase letters such as u, v, a3, ;5. The length of a word w is denoted
by |w| and represents the total number of occurrences of letters in the word. A

203
©0000 (copyright holder)

204 LILA KARI AND LAURA F. LANDWEBER

/‘ 1234567

/ . /'{ [000
/ / In the macronucleus, gene-sized
/ J chromosomes assemble from
{ @ / their scrambled building blocks;
/' telomere repeats (boxes) mark
" and protect the surviving ends.
Ty oy
3. @ =@ 4
7 5] 2

FIGURE 1. Overview of gene unscrambling. Dispersed coding
MDSs 1-7 reassemble during macronuclear development to form
the functional gene copy (top), complete with telomere addition to
mark and protect both ends of the gene. (From [8].)

word with 0 letters in it is called an empty word and is denoted by A. The set
of all possible words consisting of letters from X is denoted by X*, and the set
of all nonempty words by ¥T. We also define circular words over ¥ by declaring
two words to be equivalent if and only if (iff) one is a cyclic permutation of the
other. In other words, w is equivalent to w’ iff they can be decomposed as w = uv
and w’ = wvu, respectively. Such a circular word ew refers to any of the circular
permutations of the letters in w. Denote by X* the set of all circular words over X.

A rewriting system TM = (S, XU {#}, P) is called a Turing machine, [12], iff:

(i) S and XU {#} (with # € ¥ and X # () are two disjoint alphabets referred
to as the state and the tape alphabets.

(i1) Elements s and sy of S, and B of ¥ are the initial and final state, and the
blank symbol, respectively. Also a subset T' of ¥ is specified and referred to as the
terminal alphabet. It is assumed that 7" is not empty.

(iii) The productions (rewriting rules) of P are of the forms

(1) sja — s;jb (overprint)

(2) sijac — as;c (move right)

(3) sja# — as;B# (move right and extend workspace)
(4) esia — sjca (move left)

(5) #sia — #s;Ba (move left and extend workspace)
(6) sfa — s5
(7) asp — 55

where s; and s; are states in S, s; # sy, 55 # sp, and a,b,¢ are in X. For each
pair (s;,a), where s; and a are in the appropriate ranges, P either contains no
productions (2) and (3) (resp.(4) and (5)) or else contains both (3) and (2) for

every ¢ (resp.contains both (5) and (4) for every ¢). There is no pair (s;,a) such

COMPUTATIONAL POWER OF GENE REARRANGEMENT 205

that the word s;a is a subword of the left side in two productions of the forms (1),
(3), (5).

A configuration of the TM is of the form #wys;ws#, where wywsy represents
the contents of the tape, #s are the boundary markers, and the position of the
state symbol s; indicates the position of the read/write head on the tape: if s; is
positioned at the left of a letter a, this indicates that the read/write head is placed
over the cell containing a. The TM changes from one configuration to another
according to its rules. For example, if the current configuration is #ws;aw’# and
the TM has the rule s;a — s;b, this means that the read/write head positioned
over the letter a will write b over it, and change its state from s; to s;. The next
configuration in the derivation will be thus #ws;bw'#.

The Turing machine TM halts with a word w iff there exists a derivation that,
when started with the read/write head positioned at the beginning of w eventually
reaches the final state, i.e. if #sow# derives #£s;# by succesive applications of
the rewriting rules (1) - (7). The language L(TM) accepted by TM consists of
all words over the terminal alphabet T for which the T'M halts. Note that T'M 1s
deterministic: at each step of the rewriting process, the application of at most one
production is possible.

2. Computational power of gene rerrangement

In this section we define the notion of a guided recombination system that
models the process taking place during gene rearrangement, and prove that such
systems have the computational power of a Turing machine, the most widely used
theoretical model of electronic computers.

The following strand operations generalize the intra- and intermolecular recom-
binations defined in [8] and illustrated in Figure 2 by assuming that homologous
recombination is influenced by the presence of certain contexts, i.e., either the pres-
ence of an IES or an MDS flanking a junction sequence. The observed dependence
on the old macronuclear sequence for correct IES removal in Paramecium suggests
that this is the case ([9]). This restriction captures the fact that the guide sequences
do not contain all the information for accurate splicing during gene unscrambling.

Using an approach developed in [7] we use contexts to restrict the use of re-
combinations. A splicing scheme, [3], [4] is a pair (X, ~) where X is the alphabet
and ~, the pairing relation of the scheme, is a binary relation between triplets
of nonempty words satisfying the following condition: If (p,z,q) ~ (p',y,4’) then
r=y.

In the splicing scheme (X, ~) pairs (p, z,¢) ~ (p', z,¢’) now define the contexts
necessary for a recombination between the repeats x. Then we define contertual
wmtramolecular recombination as

{urwrvy={urv, ewz}, where u = u'p,w = quw’ = w"p’,v = ¢'v'.

This constrains intramolecular recombination within uzwzv to occur only if the
restrictions of the splicing scheme concerning x are fulfilled, i.e., the first occurrence
of x is preceded by p and followed by ¢ and its second occurrence is preceded by p’
and followed by ¢'.

Similarly, if (p,z,¢) ~ (¢', %, ¢’), then we define contertual intermolecular re-
combination as

{uzv, ewr}={urwrv} where u = u'p,v = qv’,w = w'p' = ¢'w".

206 LILA KARI AND LAURA F. LANDWEBER

+

X

F1GURE 2. Intra- and intermolecular recombinations using repeats
z. During intramolecular recombination, after = finds its second
occurrence in uzvew, the molecule undergoes a strand exchange
in z that leads to the formation of two new molecules: a linear
DNA molecule uzw and a circular one evx. The reverse operation
is intermolecular recombination.

Informally, intermolecular recombination between the linear strand uzv and the
circular strand ewx may take place only if the occurrence of x in the linear strand
is flanked by p and ¢ and its occurrence in the circular strand is flanked by p’ and
q'. Note that sequences p, z, q,p’, ¢’ are nonempty, and that both contextual intra-
and intermolecular recombinations are reversible by introducing pairs (p,x,¢’) ~
(P, 2,q) in ~.

The above operations resemble the “splicing operation” introduced by Head in
[3] and “circular splicing” ([4], [13], [11]). [10], [1] and subsequently [14] showed
that these models have the computational power of a universal Turing machine.
(See [5] for a review.)

The operations defined in [8] are particular cases of guided recombination,
where all the contexts are empty, i.e, (A, z,A) ~ (A, z,A) for all z € ©t. This
corresponds to the case where recombination may occur between every repeat se-
quence, regardless of the contexts. These unguided (context-free) recombinations
are computationally not very powerful: we have proved that they can only generate
regular languages.

If we use the classical notion of a set, we can assume that the strings entering
a recombination are available for multiple operations. Similarly, there would be
no restriction on the number of copies of each strand produced by recombination.
However, we can also assume some strings are only available in a limited number of
copies. Mathematically this translates into using multisets, where one keeps track
of the number of copies of a string at each moment. In the style of [2], if N is

COMPUTATIONAL POWER OF GENE REARRANGEMENT 207

the set of natural numbers; a multiset of * is a mapping M : ¥* — N U {co},
where, for a word w € ¥, M(w) represents the number of occurrences of w. Here,
M (w) = oo means that there are unboundedly many copies of the string w. The
set supp(M) = {w € X*| M(w) # 0}, the support of M, consists of the strings that
are present at least once in the multiset M.

We now define a guided recombination system that captures the series of dis-
persed homologous recombination events that take place during scrambled gene
rearrangements in ciliates.

Definition A guided recombination system is a triple R = (X, ~, A) where (X, ~)
is a splicing scheme, and A € X1 is a linear string called the aziom.

A guided recombination system R defines a derivation relation that produces
a new multiset from a given multiset of linear and circular strands, as follows.
Starting from a “collection” (multiset) of strings with a certain number of available
copies of each string, the next multiset is deriwed from the first one by an intra- or
inter-molecular recombination between existing strings. The strands participating
in the recombination are “consumed” (their multiplicity decreases by 1) whereas
the products of the recombination are added to the multiset (their multiplicity
increases by 1).

For two multisets S and S’ in ¥* U X*, we say that S derives S’ and we write
S=prS’, iff one of the following two cases hold:

(1) there exist « € supp(S), 5, ey € supp(S’) such that

— {a}={0, e7} according to an intramolecular recombination step in R,

- S(a) = S(@) - 1, () = S(8) + 1, $'(+7) = S(e7) + L

(2) there exist o', 05 € supp(S), v € supp(S’) such that

—{a', e }=>{'} according to an intermolecular recombination step in R,

~S(a’) = S(a') - 1, S'(e8) = S(e8) — 1, S'(7') = S(2') + 1.

Those strands which, by repeated recombinations with initial and intermediate
strands eventually produce the axiom, form the language of the guided recombina-
tion system. Formally,

L¥(R) = {w e ¥*| {w}=7%S and A € supp(9)},

where the the multiplicity of w equals k. Note that LX(R) C L*+!(R) for any k£ > 1.

Theorem. Let L be a language over T™ accepted by a Turing machine TM =
(S, T U {#}, P) as above. Then there exist an alphabet ', a sequence m € X'*,
depending on L, and a recombination system R such that a word w over T™ is in
L if and only if #°sqw#5m belongs to LX(R) for some k > 1.

Proof. Consider that the rules of P are ordered in an arbitrary fashion and
numbered. Thus, if TM has m rules, a rule is of the form ¢ : u; — v; where
1<2<m.

We construct a guided recombination system R = (X', ~, A) and a sequence
7 € ¥ with the required properties. The alphabet is X/ = SUX U {#}U{$;| 0 <
i < m+ 1}. The axiom, i.e., the target string to be achieved at the end of the
computation, consists of the final state of the TM bounded by markers:

A= #n+25f #n+2$0$1 .- ~mm+1,

208 LILA KARI AND LAURA F. LANDWEBER

where n is the maximum length of the left-side or right-side words of any of the
rules of the Turing machine.

The sequence 7 consists of the catenation of the right-hand sides of the TM
rules bounded by markers, as follows:

T =%0 $r1e1v1£151 Saeavafo%a .. Smemum fmnSm St

where 7 : u; — v;, 1 <i <m—+1 are the rules of TM and ¢;,v; € Z U {#}.

If a word w € T™ is accepted by the TM, a computation starts then from a
strand of the form #"t2sqw#7 121, where we will refer to the subsequence starting
with $o as the “program”, and to the subsequence at the left of $¢ as the “data”.

We construct the relation ~ so that

(i) The right-hand sides of rules of TM can be excised from the program as
circular strands which then interact with the data.

(ii) When the left-hand side of a TM rule appears in the data, the application
of the rule can be simulated by the insertion of the circular strand encoding the
right-hand side, followed by the deletion of the left hand side.

To accomplish (i), for each rule ¢ : u — v of the TM, we introduce in ~ the
pairs

(©) (3i-1, %5, evf) ~ (evf, 8, 3i11),

forall e, f € T U {#}.
To accomplish (i) for each rule ¢ : u — v of the TM, add to the relation ~
the pairs

(A) (ceu, f,d) ~ ($;ev, f, $;ev),

(B) (C,@,Uf$i) ~ (Uf$i,6,vfd),
for all c € {#}*X", d € T {#}", || =[d| =n, e, f € DU {#}.

Following the above construction of the alphabet ¥’ sequence 7 and recombi-
nation system R, for any z,y € ¥’ we can simulate a derivation step of the TM as
follows:

{zeeufdySo ... $i_15:cvf$i$is1 . Sma1)=>r
{zceufdySo .. Si—18:8i11 .. Smi1, oSievf =g
{zceufSievfdySo .. $i—19:8i41 . Sme1}=>r
{zcevfdySo .. $i_15:8i41 - $mi1, oSicuf}.

The first step is an intramolecular recombination using contexts (C') around
the repeat $; to excise e$;evf. Note that if the current strand does not contain
a subword $;evf$;, this can be obtained from another copy of the original linear
strand, which is initially present in k copies. The second step is an intermolec-
ular recombination using contexts (A4) around the repeat f, to insert $;evf after
ceuf. The third step is an intramolecular recombination using contexts (B) around
the direct repeat e to delete $;euf from the linear strand. Thus, the “legal” inser-
tion/deletion succession that simulates one TM derivation step claims that any u in
the data, that is surrounded by at least n+ 1 letters on both sides may be replaced
by v. This explains why in our choice of axiom we needed n + 1 extra symbols #
to provide the contexts allowing recombinations to simulate all TM rules, including

(3) and (5).

COMPUTATIONAL POWER OF GENE REARRANGEMENT 209

From the fact that a TM derivation step can be simulated by recombination
steps we deduce that, if the TM accepts a word w, then we can start a derivation
in R from

' s0w# T r = # M s0w# 25081 L Sieivi FiSi - $mSmat

and reach the axiom by only using recombinations according to E. This means that
our word is accepted by R, that is, it belongs to LX(R) for some k. Note that if
some rules of the TM have not been used in the derivation then they can be excised
in the end, and that k should be large enough so that we do not exhaust the set of
rewriting rules.

For the converse implication, it suffices to prove that starting from the strand
#7+255w#" 127, no other recombinations except those that excise rules of TM from
the program and those that simulate steps of the TM in the data are possible in R.

In the beginning of the derivation we start with no circular strands and & copies
of the linear strand

#F' 2 s0w# 280 L Sieivi £i$i .. Sy, w € T,

where i : u; — v; are TM rules, ¢;, f; e DU {#}, 1 <i<m.
Assume now that the current multiset contains linear strands of the form éq,
where 6, € £'* contains only one state symbol and no $; symbols and

7=%or1r2 . S,

with r; either encoding the right-hand side of a rule or being the remnant of a rule,
Le., r; € {$ie;v: ;8,3 U{8;}, 1 <i <m. Moreover, assume that the circular strands
present in the multiset are of the form $;¢;v; f;, with e;, v;, f; as before.

Then:

(i) We cannot use (A4) or (B) to insert or delete in the program because that
would require the presence of strands ceufd or $;evfS$;ev (if we want to use (A4))
or ceuf$; or uf$;evfd (if we want to use (B)). However none of these strands can
appear in the program. Indeed, the 1st; 3rd, and 4th word all contain subwords
over JU{#} of length at least n+3, and this is more than the length of the longest
subword over X U {#} present in the program. The 2nd word cannot appear in the
program because no marker $; appears alone in p, as p contains always at least two
consecutive markers.

(ii) We cannot use (C') to insert or delete in the data because that would require
the presence in &g of two consecutive markers $;_1$; or $;%,11, which contradicts
our assumptions.

(iii) We cannot use (C') to insert in the program because that would require
the presence of a circular strand with two markers, - contradiction with our as-
sumptions.

Arguments (i) - (iii) show that the only possible recombinations are either
deletions in the program using (C'), which result in the release of circular strands
oF;evf, or insertions/deletions in the data using (A) and (B).

Assuming that the data contains as a subword the left-hand side of a TM rule
i . u — v, and assuming that the necessary circular strand e$;evf has already
been excised from the program, the next step is to show that the only possible

210 LILA KARI AND LAURA F. LANDWEBER

insertions/deletions in the data are those simulating a rewriting step of TM using
rule ¢.

Indeed, in this situation,

(1) Tt is not possible to delete in 8, using (A), or insert or delete using (B), as all
these operations would require a §; in 8y. Therefore only an insertion in 8 using (A)
is possible. An insertion according to (A) may only take place between a sequence
ceuf and a sequence d, where u contains a state symbol, i.e. the read/write head,
¢ and d have length n and e and f are letters. This means that, for the insertion
to take place, the linear word has to be of the form

bg ™ = weeufdy w

and the intermolecular recombination with the circular strand e$;ev f inserts $;evf
between u and f producing the linear strand

b m = zceufSievfdy 7.

Note that, as &y contains only one state symbol and no marker $;, the newly
formed word 81 contains only two state symbols (read/write heads), one in « and
one in v, and only one marker $;. (Here we use the fact that every rule v — v of
the TM has exactly one state symbol on each side.)

(2) Starting now from é;,

(2a) We can delete in 6, using (B) and, as there is only one $; in &, there is
only one position where the deletion can happen. After the release of the strand
e$;euf as a circular strand, the linear strand produced is

b9 m = xeevfdy 7.

(2b) No insertion in &, using (A) may take place, as the marker $; “breaks”
the contexts necessary for further insertions.

Indeed, the occurrence of another insertion according to (A) requires that the
read/write head symbol be both followed and preceded by at least (n + 1) letters
different from $;. In é;, the first read/write head is in u and the number of letters
following it is at most |u| — 1+ |f| < n— 1+ 1= n, which is not enough as a right
context for insertion using (A). The second read/write head is in v and the number
of letters preceding it is at most |e| 4+ |v| — 1 < 14 n — 1 = n, which is not enough
as a left context for insertion using (A4).

(2¢) No deletion in 87 using (A) may occur, as this would require the presence
of a repeat f bordered by a $;ev on each side. This would imply that the current
strand é; contains two markers $;, which is not true.

(2d) No insertion in é; using (B) is possible, as that would require the presence
of a circular strand containing $;evfd. The length of such a strand would be at
least 1+ |e|+ |v] + |f| + |d| that is, at least n + 4, which is more than the length of
any initial or intermediate circular strand. Indeed, all the circular strands produced
from the program have length n 4 3 and the only circular strands that are released
are, as seen in (2a), of the form e$;euf and thus also have lengths at most n + 3.

The arguments above imply that the only possible operations on the data sim-
ulate legal rewritings of the TM by tandem recombination steps that necessarily
follow each other.

COMPUTATIONAL POWER OF GENE REARRANGEMENT 211

Together with the arguments that the only operations affecting the program
are excisions of circular strands encoding TM rules, and that the circular TM rules
do not interact with each other, this proves the converse implication.

From the definition of the Turing machine we see that n, the maximum length of
a word occurring in a TM rule, equals 4, which completes the proof of the theorem.

Q.E.D.

The preceding theorem implies that if a word w € T* is in L(TM), then
#5sow#m belongs to L¥(R) for some k and therefore it belongs to Li(R) for
any ¢ > k. This means that, in order to simulate a computation of the Turing
machine on w, any sufficiently large number of copies of the initial strand will do.
The assumption that sufficiently many copies of the input strand are present at
the beginning of the computation is in accordance with the fact that there are
multiple copies of each strand available during the (polytene chromosome) stage
where unscrambling occurs. Note that the preceding result is valid even if we allow
interactions between circular strands or within a circular strand, particular cases
of which have been formally defined in [8].

The proof that a guided recombination system can simulate the computation of
a Turing machine suggests that the micronuclear gene, present in multiple copies,
consists of a sequence encoding the input data, combined with a sequence encoding
a program, 1.e., a list of encoded computation instructions. The “computation in-
structions” can be excised from the micronuclear gene and become circular “rules”
that can recombine with the data. The process continues then by multiple inter-
molecular recombination steps involving the linear strand and circular “rules”, as
well as intramolecular recombinations within the linear strand itself. The resulting
linear strand, which is the functional macronuclear copy of the gene, can then be
viewed as the output of the computation performed on the input data following the
computation instructions excised as circular strands.

The last step, telomere addition and the excision of the strands between the
telomere addition sites, can easily be added to our model as a final step consisting of
the deletion of all the markers, rule delimiters and remaining rules from the output
of the computation. This would result in a strand that contains only the output of
the computation (macronuclear copy of the gene) flanked by end markers (telomere
repeats). This also provides a new interpretation for some of the vast quantity of
non-encoding DNA found in micronuclear genes.

In conclusion, we have developed a model for the acrobatic process of gene un-
scrambling in hypotrichous ciliates. While the model 1s consistent with our limited
knowledge of this biological process, it needs to be rigorously tested using molecular
genetics. We have shown, however, that the model is capable of universal compu-
tation. This both hints at future avenues for exploring biological computation and
opens our eyes to the range of complex behaviors that may be possible in ciliates,
and potentially available to other evolving genetic systems.

Acknowledgements. Jarkko Kari for essential contribution to the proof of the
theorem in its present form. Rani Siromoney, Gilles Brassard for suggestions, Erik
Winfree and Gheorghe Paun for comments. Grzegorz Rozenberg, Richard Lipton,
David Prescott and Hans Lipps for discussion, Mark Daley for Figure 2.

212 LILA KARI AND LAURA F. LANDWEBER

References

[1] Csuhaj-Varju, E., Freund, R., Kari, L., and G. Paun. 1996. DNA computing based on splic-
ing: universality results. In Hunter, L. and T. Klein (editors). Proceedings of 1st Pacific
Symposium on Biocomputing. World Scientific Publ., Singapore. Pages 179-190.

[2] Eilenberg, S., 1984. Automata, Languages and Machines. Academic Press, New York.

[3] Head, T. 1987. Formal language theory and DNA: an analysis of the generative capacity of
specific recombinant behaviors. Bull. Math. Biology 49: 737-759.

[4] Head, T. (1991). Splicing schemes and DNA. In Lindenmayer systems (Rozenberg, G. and
Salomaa, A., Eds.). Springer Verlag, Berlin. Pages 371-383.

[5] Head, T., Paun, G. and Pixton, D. 1997. Language theory and molecular genetics. In Hand-
book of Formal Languages (Rozenberg, G. and Salomaa, A. Eds.), vol 2., Springer Verlag,
Berlin. Pages 295-358.

[6] Hoffman, D.C., and D.M. Prescott. 1997. Evolution of internal eliminated segments and
scrambling in the micronuclear gene encoding DNA polymerase o in two Ozytricha species.
Nucl. Acids Res. 25: 1883-1889.

[7] Kari, L., and G. Thierrin. 1996. Contextual insertion/deletions and computability. Informa-
tron and Computation 131: 47-61.

[8] Landweber, L.F., Kari, L. 1998. The evolution of cellular computing: nature’s solution to
a computational problem. Proceedings of 4th DIMACS meeting on DNA based computers,
Philadephia. Pages 3-15.

[9] Meyer, E. and Duharcourt, S. 1996. Epigenetic Programming of Developmental Genome
Rearrangements in Ciliates. Cell 87 : 9-12.

[10] P&un, G. 1995. On the power of the splicing operation. Int. J. Comp. Math 59 : 27-35.

[11] Pixton, D., 1995. Linear and circular splicing systems. Proceedings of the First International
Symposium on Intelligence in Neural and Biological Systems, IEEE Computer Society Press,
Los Alamos. Pages 181-188.

[12] Salomaa, A. 1973. Formal Languages. Academic Press, New York.

[13] Siromoney, R., Subramanian, K.G. and Rajkumar Dare, V. 1992. Circular DNA and splicing
systems. In Parallel Image Analysis. Lecture Notes in Computer Science 654, Springer Verlag,
Berlin. Pages 260-273.

[14] Yokomori, T., Kobayashi, S., and Ferretti, C. 1997. Circular Splicing Systems and DNA
Computability. In Proc. of IEEE International Conference on Evolutionary Computation’97.
Pages 219-224.

(L. KarI) DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF WESTERN ONTARIO, LON-
DON, ON, N6A 5B7 CANADA

E-mail address: 1ila@csd.uwo.ca

URL: http://www.csd.uwo.ca/~ lila

(L. LANDWEBER) DEPARTMENT OF ECOLOGY AND EVOLUTIONARY BIOLOGY, PRINCETON UNI-
VERSITY, NJ 08544-1003 USA

E-mail address: 1f1@princeton.edu

URL: http://www.princeton.edu/” 1f1

